If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36n^2-18n-45=0
a = 36; b = -18; c = -45;
Δ = b2-4ac
Δ = -182-4·36·(-45)
Δ = 6804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6804}=\sqrt{324*21}=\sqrt{324}*\sqrt{21}=18\sqrt{21}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{21}}{2*36}=\frac{18-18\sqrt{21}}{72} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{21}}{2*36}=\frac{18+18\sqrt{21}}{72} $
| 1.68w=7/12 | | 6y+48=20+-4y | | 88-(5x+10)=5(x+9)+x | | 2a-3=91-10 | | 0=-16t^2+160t+20 | | t=-16t^2+160t+20 | | (2x+6)-(5x-10)=4 | | 17x-9x=-6x-22 | | X+29=16+x+2x | | 20x+40=640 | | 5^x+7=37 | | 55x−33(x−33)=−66+66x-5 | | x2+5X=2X2-4X-20-190 | | |x-5|=|-5| | | 16x+45=-4x | | 5(u-1)-7=3(u-1)=2u | | 11-3x=15x+18 | | 14x-6=0-4x+48 | | y=45+y+8 | | 1/3x+1/4=12 | | 5d^2−9d+4=0 | | -7(7-7a)+4=-23+3a | | 5d2−9d+4=0 | | 6x-1=3x-6 | | -7(7-7x)+4=-23+3x | | -136-8x=8x-24 | | 4b/7=41 | | y=45=y | | -2(2x+6)=18 | | -3(y+1)+7y=-4(y+1)-7 | | 5x-3=+14x | | -7s−6=-6s |